Library
▹
Essentials
▹
Sets
Definition 1.1.24.
Let
U
be a set,
S
,
T
⊆
U
. We define:
S
∖
T
:
=
{
x
∈
U
:
x
∈
S
and
x
∉
T
}
=
{
x
∈
S
:
x
∉
T
}
Equality.
No proof.
References.
https://en.wikipedia.org/wiki/Complement_(set_theory)#Relative_complement
https://mathworld.wolfram.com/SetDifference.html
https://proofwiki.org/wiki/Definition:Set_Difference
http://metamath.tirix.org/df-dif.html
http://metamath.tirix.org/dfdif2.html
https://leanprover-community.github.io/mathlib_docs/init/data/set.html#set.diff