Library
▹
Essentials
▹
Sets
Proposition 1.1.10.
Let
U
be a set,
S
,
T
⊆
U
. Then:
S
∩
T
=
T
∩
S
Proof.
Let
x
∈
S
∩
T
. Then
x
∈
T
∩
S
:
We show that
x
∈
T
and
x
∈
S
:
x
∈
S
∩
T
⇒
def
x
∈
S
and
x
∈
T
Let
x
∈
T
∩
S
. Then
x
∈
S
∩
T
:
We show that
x
∈
S
and
x
∈
T
:
x
∈
T
∩
S
⇒
def
x
∈
T
and
x
∈
S
References.
https://proofwiki.org/wiki/Intersection_is_Commutative
http://metamath.tirix.org/incom.html
https://leanprover-community.github.io/mathlib_docs/data/set/basic.html#set.inter_comm