Library ▹ Essentials ▹ Numbers ▹ Cardinal numbers
  • m = n  if m, n ∈ ℕ, f : ℕ<m ↔ ℕ<n is a bijection
  • Crd (cardinal numbers)
  • (κ)
  • Homomorphisms
  • ≤
  • <
  • |T| ≤ |S|  if S is a set, T ⊆ S
  • Subsets
  • κ ≤ μ and μ ≤ κ  ⇔  Iso(κ, μ) is nonempty  ⇔  κ = μ  if κ, μ are cardinal numbers
  • ≤ is a partial order
  • AC  ⇔  ≤ is a total order
  • +
  • ⋅
  • κμ
  • |P(S)| = |Prp(S)| = 2|S|  if S is a set
  • Examples
  • finite/infinite
  • μ is finite, κ ≤ μ  ⇒  κ is finite  if κ, μ are cardinal numbers
  • countable/uncountable
  • μ is countable, κ ≤ μ  ⇒  κ is countable  if κ, μ are cardinal numbers
  • countably infinite
  • |P(S)| > |S|  if S is a set
  • κμ > μ  if κ ∈ Crd>1, μ is a cardinal number
  • c is uncountable
  • Iterated operators
[View Source]