Library
▹
Essentials
▹
Functions
Definition 1.5.17.
Let
X
,
Y
be sets,
f
:
X
→
Y
be a
function
. We define:
f
is surjective
:
⇔
∀
y
∈
Y
: ∃
x
∈
X
:
f
(
x
)
=
y
⇔
Y
⊆
f
(
X
)
⇔
f
(
X
)
=
Y
Equivalence.
No proof.
References.
https://en.wikipedia.org/wiki/Surjective_function
https://mathworld.wolfram.com/Surjection.html
https://proofwiki.org/wiki/Definition:Surjection
https://ncatlab.org/nlab/show/surjection
https://leanprover-community.github.io/mathlib_docs/init/function.html#function.surjective