Library
▹
Essentials
▹
Functions
Definition 1.5.16.
Let
X
,
Y
be sets,
f
:
X
→
Y
be a
function
. We define:
f
is injective
:
⇔
∀
a
,
b
∈
X
s.t.
f
(
a
)
=
f
(
b
)
:
a
=
b
⇔
∀
c
∈
Y
,
d
,
e
∈
f
-1
({
c
})
:
d
=
e
⇔
∀
y
∈
f
(
X
)
: ∃!
x
∈
X
:
f
(
x
)
=
y
⇔
X
is empty
or ∃
g
:
Y
→
X
:
g
∘
f
=
id
X
Equivalence.
No proof.
References.
https://en.wikipedia.org/wiki/Injective_function
https://mathworld.wolfram.com/Injection.html
https://proofwiki.org/wiki/Definition:Injection
https://ncatlab.org/nlab/show/injection
https://leanprover-community.github.io/mathlib_docs/init/function.html#function.injective