Proposition 1.5.23.  Let X be a set, A ⊆ X, Y be a set, f:X → Y be a function. Then:
Proof.  Let y ∈ f(A). Then ∃ x ∈ A : fAf(A)(x) = y:
y ∈ f(A)def∃ a ∈ A : y = f(a)
Take x:= a. fAf(A)(a) = f(a) = y.