Library
▹
Essentials
▹
Functions
Proposition 1.5.21.
Let
X
be a set,
A
⊆
X
,
B
be a set,
Y
⊆
B
,
f
:
X
→
Y
be a
function
such that
f
∣
A
B
is surjective
. Then:
f
is surjective
Proof.
Let
y
∈
Y
. Then ∃
x
∈
X
:
f
(
x
)
=
y
:
f
∣
A
B
is surjective
⇒
def
∀
b
∈
B
: ∃
a
∈
A
:
f
∣
A
B
(
a
)
=
b
⇒
y
∈
B
∃
a
∈
A
:
f
∣
A
B
(
a
)
=
y
⇒
def
f
(
a
)
=
y
Take
x
:
=
a
.