Proposition 1.5.21.  Let X be a set, A ⊆ X, B be a set, Y ⊆ B, f:X → Y be a function such that fAB is surjective. Then:
Proof.  Let y ∈ Y. Then ∃ x ∈ X : f(x) = y:
fAB is surjectivedef∀ b ∈ B : ∃ a ∈ A : fAB(a) = by ∈ B∃ a ∈ A : fAB(a) = ydeff(a) = y
Take x:= a.