Proposition 1.5.24.  Let X, Y, Z be sets, f:X → Y be an injectivefunction, g:Y → Z be an injectivefunction. Then:
Proof.  Let a, b ∈ X such that g(f(a)) = g(f(b)). Then a = b:
g is injectivedef∀ c, d ∈ Y s.t. g(c) = g(d) : c = df(a),f(b) ∈ Y, g(f(a)) = g(f(b))f(a) = f(b)
f is injectivedef∀ x, y ∈ X s.t. f(x) = f(y) : x = ya,b ∈ X, f(a) = f(b)a = b