Library
▹
Essentials
▹
Functions
Proposition 1.5.24.
Let
X
,
Y
,
Z
be sets,
f
:
X
→
Y
be an
injective
function
,
g
:
Y
→
Z
be an
injective
function
. Then:
g
∘
f
is injective
Proof.
Let
a
,
b
∈
X
such that
g
(
f
(
a
))
=
g
(
f
(
b
))
. Then
a
=
b
:
g
is injective
⇒
def
∀
c
,
d
∈
Y
s.t.
g
(
c
)
=
g
(
d
)
:
c
=
d
⇒
f
(
a
)
,
f
(
b
)
∈
Y
,
g
(
f
(
a
))
=
g
(
f
(
b
))
f
(
a
)
=
f
(
b
)
f
is injective
⇒
def
∀
x
,
y
∈
X
s.t.
f
(
x
)
=
f
(
y
)
:
x
=
y
⇒
a
,
b
∈
X
,
f
(
a
)
=
f
(
b
)
a
=
b