Library
▹
Essentials
▹
Functions
Proposition 1.5.30.
Let
X
,
Y
be sets,
f
:
X
↔
Y
be a
bijection
,
x
∈
X
. Then:
f
-1
(
f
(
x
))
=
x
Proof.
f
-1
∘
f
=
id
X
by
definition of
f
-1
⇒
def
∀
z
∈
X
:
f
-1
(
f
(
z
))
=
z
⇒
x
∈
X
f
-1
(
f
(
x
))
=
x