Library
▹
Essentials
▹
Functions
Proposition 1.5.31.
Let
X
,
Y
be sets,
f
:
X
↔
Y
be a
bijection
,
y
∈
Y
. Then:
f
(
f
-1
(
y
))
=
y
Proof.
f
∘
f
-1
=
id
Y
by
definition of
f
-1
⇒
def
∀
z
∈
Y
:
f
(
f
-1
(
z
))
=
z
⇒
y
∈
Y
f
(
f
-1
(
y
))
=
y