Definition 1.2.4.  Let b ∈ Bool. We define
b is true
by:
[p] is true  :⇔  p  (p is a proposition)  ⇔  b =   ⇔  b ≠ 
b is false  :⇔  b is not true
Equivalence.
  • Assume p if b = [p] (p is a proposition). Then b = :
    Let q be a proposition such that b = [q] and q. Then:
    b = [q] = :
    We show that [q] = :
    q.
  • Assume b = . Then b ≠ :
    Assume b = .
    b =  = def[true  ⇔  false] 
  • Assume b ≠ .
    Let q be a proposition such that b = [q]. Then q:
    b ≠ b = [q][q] ≠ defq
References.