Library
▹
Essentials
▹
Boolean values
Definition 1.2.4.
Let
b
∈
Bool
. We define
b
is true
by:
[
p
]
is true
:
⇔
p
(
p
is a proposition)
⇔
b
=
⊤
⇔
b
≠
⊥
b
is false
:
⇔
b
is not true
Equivalence.
Assume
p
if
b
=
[
p
]
(
p
is a proposition)
. Then
b
=
⊤
:
Let
q
be a proposition such that
b
=
[
q
]
and
q
. Then:
b
=
[
q
]
=
⊤
:
We show that
[
q
]
=
⊤
:
q
.
Assume
b
=
⊤
. Then
b
≠
⊥
:
Assume
b
=
⊥
.
⇒
b
=
⊤
⊤
=
⊥
⇒
def
[true ⇔ false]
↯
Assume
b
≠
⊥
.
Let
q
be a proposition such that
b
=
[
q
]
. Then
q
:
b
≠
⊥
⇒
b
=
[
q
]
[
q
]
≠
⊥
⇒
def
q
References.
https://coq.inria.fr/library/Coq.Bool.Bool.html#Is_true
https://leanprover-community.github.io/mathlib_docs/init/coe.html#coe_bool_to_Prop