Library
▹
Category theory
Definition 4.6.
Let
u
∈
ℕ
,
C
be a/an
u
-small category
,
X
,
Y
∈
C
. We define:
Iso(
X
,
Y
)
:
=
{
f
:
X
→
Y
: ∃
g
:
Y
→
X
: [
g
∘
f
=
id
X
and
f
∘
g
=
id
Y
]}
=
{
f
:
X
→
Y
: ∃!
g
:
Y
→
X
: [
g
∘
f
=
id
X
and
f
∘
g
=
id
Y
]}
We write “let
F
:
X
↔
Y
be an isomorphism” for “let
F
∈ Iso(
X
,
Y
).”
Equality.
No proof.
References.
https://en.wikipedia.org/wiki/Isomorphism#Category_theoretic_view
https://mathworld.wolfram.com/Isomorphism.html
https://proofwiki.org/wiki/Definition:Isomorphism_(Category_Theory)
https://ncatlab.org/nlab/show/isomorphism