Library
▹
Algebra
▹
Semirings
Definition 2.7.1.
Let
R
be a set,
⊕
:
R
×
R
→
R
be an
operation
on
R
,
0
∈
R
,
⊙
:
R
×
R
→
R
be an
operation
on
R
,
1
∈
R
. We define:
(
R
,
⊕
,
0
,
⊙
,
1
) forms a semiring
:
⇔
(
R
,
⊕
,
0
) forms a commutative monoid
and
(
R
,
⊙
,
1
) forms a monoid
and
⊙
is distributive over
⊕
and
0
is an absorbing element for
⊙
References.
https://en.wikipedia.org/wiki/Semiring
https://proofwiki.org/wiki/Definition:Rig#Also_defined_as
https://ncatlab.org/nlab/show/rig
https://coq.inria.fr/library/Coq.setoid_ring.Ring_theory.html#semi_ring_theory
https://leanprover-community.github.io/mathlib_docs/algebra/ring/basic.html#semiring