Definition 2.7.7.  Let R be a semiring, a, b ∈ R. We define:
a ⋅ b:= ab if R = [R, , 0, , 1] (R is a set, :R × R → R is an operation on R, 0 ∈ R, :R × R → R is an operation on R, 1 ∈ R such that (R, , 0, , 1) forms a semiring)
Remarks.

This definition lets us multiply elements without decomposing the semiring.