Library
▹
Algebra
▹
Rings
Definition 2.8.15.
Let
R
be a
ring
,
a
∈
R
. We define:
a
is a unit
:
⇔
∃
b
∈
R
:
a
⋅
b
=
b
⋅
a
=
1
R
⇔
∃!
b
∈
R
:
a
⋅
b
=
b
⋅
a
=
1
R
Equivalence.
No proof.
References.
https://en.wikipedia.org/wiki/Unit_(ring_theory)
https://mathworld.wolfram.com/Unit.html
https://proofwiki.org/wiki/Definition:Unit_of_Ring
https://ncatlab.org/nlab/show/unit#units_in_rings
https://leanprover-community.github.io/mathlib_docs/algebra/group/units.html#is_unit