Definition 2.8.2.  We define:
Ring:=: {[R, , 0, , , 1] | R is a set, :R × R → R is an operation on R, 0 ∈ R, :R → R is a function, :R × R → R is an operation on R, 1 ∈ R such that (R, , 0, , , 1) forms a ring}
[R, , 0, , , 1] = [S, , 0, , , 1]  :⇔  ∃ φ:R ↔ S : [φ and 0φ0 and φ and φ and 1φ1]  (R is a set, :R × R → R is an operation on R, 0 ∈ R, :R → R is a function, :R × R → R is an operation on R, 1 ∈ R, S is a set, :S × S → S is an operation on S, 0 ∈ S, :S → S is a function, :S × S → S is an operation on S, 1 ∈ S with suitable conditions)
We write “let R be a ring” for “let R ∈ Ring.”
References.