Definition 2.5.16.  Let M be a commutativemonoid. We define
M
by:
[M,,e]:= bigop(e ⋅⋅⋅) is an iterated operation on M  (M is a set, :M × M → M is an operation on M, e ∈ M such that (M, , e) forms a monoid)
Example.

$../../Essentials/Operations/"Iterated operations"/"indexed by natural number"(X = $Carrier(𝐌 = 𝐌), ⨂ = $"iterated operation"(𝐌 = 𝐌), n = n, _1 = {#(i: %Element($../../Essentials/Numbers/Natural/Subsets/"Segment (less)"(n = n))), {a = {a[i = i]}}})

References.