Library
▹
Algebra
▹
Magmas
Definition 2.3.9.
Let
M
be a
magma
,
e
∈
M
. We define
e
is an identity of
M
by:
e
is an identity of
[
M
,
∗
]
:
⇔
e
is an identity for
∗
(
M
is a set,
∗
:
M
×
M
→
M
is an
operation
on
M
)
References.
https://en.wikipedia.org/wiki/Identity_element
https://mathworld.wolfram.com/IdentityElement.html
https://proofwiki.org/wiki/Definition:Identity_Element
https://ncatlab.org/nlab/show/identity+element