∗ ≃φ ⋆
by:
(X × S → X(x, s) ↦ ax,s) ≃φ (Y × S → Y(y, s) ↦ by,s) :⇔ ∀ x ∈ X, s ∈ S : φ(ax,s) = bφ(x),s (ax,s ∈ X for each x ∈ X and s ∈ S, by,s ∈ Y for each y ∈ Y and s ∈ S) ⇔ ∀ x ∈ X, s ∈ S : φ(x ∗ s) = φ(x) ⋆ s ⇔ φ ∘ ∗ = ⋆ ∘ (φ × idS) Equivalence. No proof.