Library
▹
Algebra
▹
Generic definitions
▹
Isomorphisms
Definition 2.1.1.6.
Let
X
,
Y
be sets,
φ
:
X
↔
Y
be a
bijection
,
≺
be a
relation
on
X
,
⊂
be a
relation
on
Y
. We define
≺
≃
φ
⊂
by:
[
p
x
1
,
x
2
]
x
1
,
x
2
∈
X
≃
φ
[
q
y
1
,
y
2
]
y
1
,
y
2
∈
Y
:
⇔
∀
x
1
,
x
2
∈
X
: [
p
x
1
,
x
2
⇔
q
φ
(
x
1
)
,
φ
(
x
2
)
]
(
q
y
1
,
y
2
is a proposition for each
y
1
,
y
2
∈
Y
,
p
x
1
,
x
2
is a proposition for each
x
1
,
x
2
∈
X
)
⇔
∀
x
1
,
x
2
∈
X
: [
x
1
≺
x
2
⇔
φ
(
x
1
)
⊂
φ
(
x
2
)
]
Equivalence.
No proof.