Definition 2.1.1.7.  Let X1, X2, X3, Y1, Y2, Y3 be sets, φ1:X1 ↔ Y1, φ2:X2 ↔ Y2, φ3:X3 ↔ Y3 be bijections, :X1 × X2 → X3, :Y1 × Y2 → Y3 be operations. We define
φ1,φ2,φ3
by:
(X1 × X2 → X3(x1, x2) ↦ ax1,x2)φ1,φ2,φ3(Y1 × Y2 → Y3(y1, y2) ↦ by1,y2)  :⇔  ∀ x1 ∈ X1, x2 ∈ X2 : φ3(ax1,x2) = bφ1(x1),φ2(x2)  (ax1,x2 ∈ X3 for each x1 ∈ X1 and x2 ∈ X2, by1,y2 ∈ Y3 for each y1 ∈ Y1 and y2 ∈ Y2)  ⇔  ∀ x1 ∈ X1, x2 ∈ X2 : φ3(x1x2) = φ1(x1) φ2(x2)  ⇔  φ3 ∘  =  ∘ (φ1 × φ2)
Equivalence.  No proof.